An Assimilated Face Recognition System With effective Gender Recognition Rate
نویسندگان
چکیده
Gender Recognition in Face Recognition System has prevalent applications in the fields of demographic data collection, video surveillance, security, retail advertising and marketing and it also plays a vital role on object recognition in robot research area, which has shown an intensive attention in the past few years.However, face recognition is still a challenging task since face images are easily confused by changes of the facial factors, such as illumination, pose, the different expressions, or glasses. The goal of this paper is to improve the effectiveness of gender recognition when there are affected(blurred) images in the dataset. We applied novel descriptor based COSFIRE filters to achieve the Gender Recognition[1] in the Face Recognition System. A COSFIRE filter is trainable, in that its selectivity is determined in an automatic configuration process that analyses a given prototype pattern of interest on FERET training set. Extensive experiments were conducted on the GENDER-FERET dataset which contains 474 training and 472 test samples and demonstrated robustness and effectiveness of the proposed model. It also outperforms an approach that relies on handcrafted features and an ensemble of classifiers.
منابع مشابه
A New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients
In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...
متن کاملHybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملFace Recognition by Cognitive Discriminant Features
Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...
متن کامل